If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+3=51
We move all terms to the left:
3y^2+3-(51)=0
We add all the numbers together, and all the variables
3y^2-48=0
a = 3; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·3·(-48)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*3}=\frac{-24}{6} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*3}=\frac{24}{6} =4 $
| 6(2y+3)−4(y−5)=0 | | 5x2+13x-1=0 | | (x+10)^2=36 | | 2X^2-16y=0 | | 14x+4=55 | | 3x-5+2x+20=180 | | -3/4x+15=1/2x+5 | | 10q=25 | | 4m+14=34 | | F(x)=-3x^2+5x-11 | | 5g+5=3-3g | | 5x2-68x=192 | | 420/x*11-60=600 | | 5+6y=8y+5 | | 2(1/3r)+1/3r+r=324 | | (2m-3)(m-2)=0 | | (4x+1)^2=81 | | 23*30-c=583 | | (4x+2)^2=81 | | x/3+38=338 | | 2x2-9x-221=0 | | x/5-38+313=371 | | 3x2+40x-28=0 | | 3x*2+2=77 | | 8r^2-10r-12=0 | | (c-1)(c-1)=1 | | 6(-2)-y=3 | | -18-y=3 | | 5^x^2=25^7x-24 | | 12x-8=72x+36 | | 3x2+39x+180=0 | | 4a^2-14a-30^2=0 |